7,995 research outputs found

    A Silent-Speech Interface using Electro-Optical Stomatography

    Get PDF
    Sprachtechnologie ist eine große und wachsende Industrie, die das Leben von technologieinteressierten Nutzern auf zahlreichen Wegen bereichert. Viele potenzielle Nutzer werden jedoch ausgeschlossen: Nämlich alle Sprecher, die nur schwer oder sogar gar nicht Sprache produzieren können. Silent-Speech Interfaces bieten einen Weg, mit Maschinen durch ein bequemes sprachgesteuertes Interface zu kommunizieren ohne dafür akustische Sprache zu benötigen. Sie können außerdem prinzipiell eine Ersatzstimme stellen, indem sie die intendierten Äußerungen, die der Nutzer nur still artikuliert, künstlich synthetisieren. Diese Dissertation stellt ein neues Silent-Speech Interface vor, das auf einem neu entwickelten Messsystem namens Elektro-Optischer Stomatografie und einem neuartigen parametrischen Vokaltraktmodell basiert, das die Echtzeitsynthese von Sprache basierend auf den gemessenen Daten ermöglicht. Mit der Hardware wurden Studien zur Einzelworterkennung durchgeführt, die den Stand der Technik in der intra- und inter-individuellen Genauigkeit erreichten und übertrafen. Darüber hinaus wurde eine Studie abgeschlossen, in der die Hardware zur Steuerung des Vokaltraktmodells in einer direkten Artikulation-zu-Sprache-Synthese verwendet wurde. Während die Verständlichkeit der Synthese von Vokalen sehr hoch eingeschätzt wurde, ist die Verständlichkeit von Konsonanten und kontinuierlicher Sprache sehr schlecht. Vielversprechende Möglichkeiten zur Verbesserung des Systems werden im Ausblick diskutiert.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 191Speech technology is a major and growing industry that enriches the lives of technologically-minded people in a number of ways. Many potential users are, however, excluded: Namely, all speakers who cannot easily or even at all produce speech. Silent-Speech Interfaces offer a way to communicate with a machine by a convenient speech recognition interface without the need for acoustic speech. They also can potentially provide a full replacement voice by synthesizing the intended utterances that are only silently articulated by the user. To that end, the speech movements need to be captured and mapped to either text or acoustic speech. This dissertation proposes a new Silent-Speech Interface based on a newly developed measurement technology called Electro-Optical Stomatography and a novel parametric vocal tract model to facilitate real-time speech synthesis based on the measured data. The hardware was used to conduct command word recognition studies reaching state-of-the-art intra- and inter-individual performance. Furthermore, a study on using the hardware to control the vocal tract model in a direct articulation-to-speech synthesis loop was also completed. While the intelligibility of synthesized vowels was high, the intelligibility of consonants and connected speech was quite poor. Promising ways to improve the system are discussed in the outlook.:Statement of authorship iii Abstract v List of Figures vii List of Tables xi Acronyms xiii 1. Introduction 1 1.1. The concept of a Silent-Speech Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Fundamentals of phonetics 7 2.1. Components of the human speech production system . . . . . . . . . . . . . . . . . . . 7 2.2. Vowel sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Consonantal sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4. Acoustic properties of speech sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5. Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6. Phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7. Summary and implications for the design of a Silent-Speech Interface (SSI) . . . . . . . 21 3. Articulatory data acquisition techniques in Silent-Speech Interfaces 25 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Scope of the literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Video Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4. Ultrasonography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. Permanent-Magnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7. Electromagnetic Articulography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.8. Radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.9. Palatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10.Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4. Electro-Optical Stomatography 55 4.1. Contact sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2. Optical distance sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3. Lip sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.4. Sensor Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5. Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5. Articulation-to-Text 99 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2. Command word recognition pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3. Command word recognition small-scale study . . . . . . . . . . . . . . . . . . . . . . . . 102 6. Articulation-to-Speech 109 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2. Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3. The six point vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4. Objective evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5. Perceptual evaluation of the vocal tract model . . . . . . . . . . . . . . . . . . . . . . . . 120 6.6. Direct synthesis using EOS to control the vocal tract model . . . . . . . . . . . . . . . . 125 6.7. Pitch and voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7. Summary and outlook 145 7.1. Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A. Overview of the International Phonetic Alphabet 151 B. Mathematical proofs and derivations 153 B.1. Combinatoric calculations illustrating the reduction of possible syllables using phonotactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 B.2. Signal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.3. Effect of the contact sensor area on the conductance . . . . . . . . . . . . . . . . . . . . 155 B.4. Calculation of the forward current for the OP280V diode . . . . . . . . . . . . . . . . . . 155 C. Schematics and layouts 157 C.1. Schematics of the control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 C.2. Layout of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 C.3. Bill of materials of the control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 C.4. Schematics of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.5. Layout of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 C.6. Bill of materials of the sensor unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D. Sensor unit assembly 169 E. Firmware flow and data protocol 177 F. Palate file format 181 G. Supplemental material regarding the vocal tract model 183 H. Articulation-to-Speech: Optimal hyperparameters 189 Bibliography 19

    Sustained Magnetorotational Turbulence in Local Simulations of Stratified Disks with Zero Net Magnetic Flux

    Full text link
    We examine the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation. Our primary result is that, even in the absence of explicit dissipation, the addition of vertical gravity leads to convergence in the turbulent energy densities and stresses as the resolution increases, contrary to results for zero net flux, unstratified boxes. The ratio of total stress to midplane pressure has a mean of ~0.01, although there can be significant fluctuations on long (>~50 orbit) timescales. We find that the time averaged stresses are largely insensitive to both the radial or vertical aspect ratio of our simulation domain. For simulations with explicit dissipation, we find that stratification extends the range of Reynolds and magnetic Prandtl numbers for which turbulence is sustained. Confirming the results of previous studies, we find oscillations in the large scale toroidal field with periods of ~10 orbits and describe the dynamo process that underlies these cycles.Comment: 13 pages, 18 figures, submitted to Ap

    Viscous and Resistive Effects on the MRI with a Net Toroidal Field

    Full text link
    Resistivity and viscosity have a significant role in establishing the energy levels in turbulence driven by the magnetorotational instability (MRI) in local astrophysical disk models. This study uses the Athena code to characterize the effects of a constant shear viscosity \nu and Ohmic resistivity \eta in unstratified shearing box simulations with a net toroidal magnetic flux. A previous study of shearing boxes with zero net magnetic field performed with the ZEUS code found that turbulence dies out for values of the magnetic Prandtl number, P_m = \nu/\eta, below P_m \sim 1; for P_m \gtrsim 1, time- and volume-averaged stress levels increase with P_m. We repeat these experiments with Athena and obtain consistent results. Next, the influence of viscosity and resistivity on the toroidal field MRI is investigated both for linear growth and for fully-developed turbulence. In the linear regime, a sufficiently large \nu or \eta can prevent MRI growth; P_m itself has little direct influence on growth from linear perturbations. By applying a range of values for \nu and \eta to an initial state consisting of fully developed turbulence in the presence of a background toroidal field, we investigate their effects in the fully nonlinear system. Here, increased viscosity enhances the turbulence, and the turbulence decays only if the resistivity is above a critical value; turbulence can be sustained even when P_m < 1, in contrast to the zero net field model. While we find preliminary evidence that the stress converges to a small range of values when \nu and \eta become small enough, the influence of dissipation terms on MRI-driven turbulence for relatively large \eta and \nu is significant, independent of field geometry.Comment: Accepted to ApJ; version 2 - minor changes following review; 35 pages (preprint format), 10 figure

    Resistivity-driven State Changes in Vertically Stratified Accretion Disks

    Full text link
    We investigate the effect of shear viscosity and Ohmic resistivity on the magnetorotational instability (MRI) in vertically stratified accretion disks through a series of local simulations with the Athena code. First, we use a series of unstratified simulations to calibrate physical dissipation as a function of resolution and background field strength; the effect of the magnetic Prandtl number, Pm = viscosity/resistivity, on the turbulence is captured by ~32 grid zones per disk scale height, H. In agreement with previous results, our stratified disk calculations are characterized by a subthermal, predominately toroidal magnetic field that produces MRI-driven turbulence for |z| < 2 H. Above |z| = 2 H, magnetic pressure dominates and the field is buoyantly unstable. Large scale radial and toroidal fields are also generated near the mid-plane and subsequently rise through the disk. The polarity of this mean field switches on a roughly 10 orbit period in a process that is well-modeled by an alpha-omega dynamo. Turbulent stress increases with Pm but with a shallower dependence compared to unstratified simulations. For sufficiently large resistivity, on the order of cs H/1000, where cs is the sound speed, MRI turbulence within 2 H of the mid-plane undergoes periods of resistive decay followed by regrowth. This regrowth is caused by amplification of toroidal field via the dynamo. This process results in large amplitude variability in the stress on 10 to 100 orbital timescales, which may have relevance for partially ionized disks that are observed to have high and low accretion states.Comment: very minor changes, accepted to Ap

    Sedimentary record of Early Permian deglaciation in southern Gondwana from the Falkland Islands

    Get PDF
    The deglaciation of southern Gondwana during the Early Permian was preceded by waxing and waning of the south polar ice sheet. The fluctuations in ice extent are recorded in the sedimentary record by strata separating thick deposits of glacial diamictite from post-glacial mudrock. These deposits span across all of the major Gondwana fragments, now recognized as South Africa, South America, India, Antarctica and Australia, and also occur on the Falklands and Ellsworth Mountains microplates created during break-up of the supercontinent in the Mesozoic. We present sedimentary evidence for the progression of deglaciation from the Falkland Islands microplate using a series of borehole core runs acquired during onshore mineral exploration. Glacial advance and retreat phases are inferred from the Hells Kitchen Member of the Port Sussex Formation; the rock succession that conformably overlies the main body of glacial diamictite known locally as the Fitzroy Tillite Formation. The pulsated nature of the transition to fully post-glacial conditions was accompanied by an intricate interplay of sedimentary processes, including soft sediment deformation, meltwater pulses and turbidity currents. The Falkland Islands core data lend insight into the evolving Early Permian environment and offer an unusually complete view of continental margin deglaciation preserved in the ancient sedimentary record. Supplementary material: Borehole core photographs from the Fitzroy Tillite Formation, Hells Kitchen Member and Black Rock Member for cores DD029 and DD090 are available at https://doi.org/10.6084/m9.figshare.c.4031119.v

    Emergent Mesoscale Phenomena in Magnetized Accretion Disc Turbulence

    Full text link
    We study how the structure and variability of magnetohydrodynamic (MHD) turbulence in accretion discs converge with domain size. Our results are based on a series of vertically stratified local simulations, computed using the Athena code, that have fixed spatial resolution, but varying radial and azimuthal extent (from \Delta R = 0.5H to 16H, where H is the vertical scale height). We show that elementary local diagnostics of the turbulence, including the Shakura-Sunyaev {\alpha} parameter, the ratio of Maxwell stress to magnetic energy, and the ratio of magnetic to fluid stresses, converge to within the precision of our measurements for spatial domains of radial size Lx \geq 2H. We obtain {\alpha} = 0.02-0.03, consistent with recent results. Very small domains (Lx = 0.5H) return anomalous results, independent of spatial resolution. The convergence with domain size is only valid for a limited set of diagnostics: larger spatial domains admit the emergence of dynamically important mesoscale structures. In our largest simulations, the Maxwell stress shows a significant large scale non-local component, while the density develops long-lived axisymmetric perturbations (zonal flows) at the 20% level. Most strikingly, the variability of the disc in fixed-sized patches decreases strongly as the simulation volume increases. We find generally good agreement between our largest local simulations and global simulations with comparable spatial resolution. There is no direct evidence that the presence of curvature terms or radial gradients in global calculations materially affect the turbulence, except to perhaps introduce an outer radial scale for mesoscale structures. The demonstrated importance of mean magnetic fields, seen in both large local and global simulations implies that the growth and saturation of these fields is likely of critical importance for the evolution of accretion discs. (abridged)Comment: 18 pages, 20 figures, accepted to MNRA

    Los REA en la práctica: el cambio organizativo mediante el bootstrapping

    Get PDF
    En aquest treball investiguem un plantejament de canvi institucional encaminat a establir pràctiques educatives obertes (PEO) en una universitat i inculcar l'ús de recursos educatius oberts (REO) com a part del seu treball curricular i la seva pràctica educativa. Les pràctiques tradicionals, consistents a proporcionar recursos d'aprenentatge per a un ensenyament individualitzat en mòduls acadèmics semestrals, s'adapten cada vegada pitjor als requisits d'un panorama educatiu dinàmic i global. Els REO ofereixen una alternativa sostenible i equitativa a aquestes pràctiques tancades, i tenen la capacitat de satisfer la demanda emergent en entorns d'aprenentatge distribuït. No obstant això, canviar les pràctiques educatives continua essent un repte formidable, i l'adopció dels REO comporta una ruptura radical pel que fa a les pràctiques institucionals heretades. En aquest treball ens centrem en el punt de partida per a integrar els REO en el treball curricular i les pràctiques educatives. A la Universitat La Trobe (Austràlia) investiguem aquest canvi més per mitjà d'iniciatives emergents que d'un programa dissenyat jeràrquicament des de dalt: ens plantegem quines són les connexions necessàries per a implantar pràctiques obertes en una universitat. Descrivim tres casos de PEO que, junts, generen capacitats de REA en una universitat. Aprofitem l'estratègia de bootstrapping plantejada per Bardini com a procés d'aprenentatge iteratiu i coadaptatiu que connecta les bones pràctiques in situ amb les estructures institucionals a fi d'establir les bases de treball per al canvi emergent. Aquests casos demostren com uns processos innovadors tan dispars es poden connectar i modificar per a crear una xarxa de PEO incipient. In this paper, we investigate an approach to institutional change that aims to establish open educational practices (OEP) in a university and inculcate the use of open education resources (OER) as part of its curriculum work and teaching practice. Traditional practices that involve delivering knowledge resources for individualised learning within semester-length units of study are becoming increasingly ill-adapted to the demands of a dynamic and global educational landscape. OER offers a sustainable and equitable alternative to such closed arrangements, with the potential to meet the emerging demands of distributed learning settings. Nevertheless, changing educational practice remains a formidable challenge, and adopting OER is a radical break from legacy institutional practices. Our focus in this paper is on the starting point for embedding OER in curriculum work and teaching practice. We investigate change through emergent initiatives rather than a top-down program at La Trobe University in Australia: we ask what connections are necessary to establish open practices in a university. We trace three instances of OEP in one university that together build capacity in OER. We draw on Bardini’s strategy of bootstrapping, as an iterative and co-adaptive learning process that connects good practices in situ with institutional structures in order to build the groundwork for emergent change. These cases demonstrate how disparate innovations can be connected and re-purposed to establish a network of nascent OEP. En este trabajo investigamos un planteamiento de cambio institucional encaminado a establecer prácticas educativas abiertas (PEA) en una universidad e inculcar el uso de recursos educativos abiertos (REA) como parte de su trabajo curricular y su práctica educativa. Las prácticas tradicionales, consistentes en proporcionar recursos de aprendizaje para una enseñanza individualizada en módulos académicos semestrales, se adaptan cada vez peor a los requisitos de un panorama educativo dinámico y global. Los REA ofrecen una alternativa sostenible y equitativa a estas prácticas cerradas, y tienen la capacidad de satisfacer la demanda emergente en entornos de aprendizaje distribuido. No obstante, cambiar las prácticas educativas sigue siendo un reto formidable, y la adopción de los REA supone una ruptura radical con respecto a las prácticas institucionales heredadas. En el presente trabajo nos centramos en el punto de partida para integrar los REA en el trabajo curricular y las prácticas educativas. En la Universidad La Trobe (Australia) investigamos este cambio más a través de iniciativas emergentes que de un programa diseñado jerárquicamente desde arriba: nos planteamos cuáles son las conexiones necesarias para implantar prácticas abiertas en una universidad. Describimos tres casos de PEA que, juntos, generan capacidades de REA en una universidad. Aprovechamos la estrategia de bootstrapping planteada por Bardini como proceso de aprendizaje iterativo y coadaptativo que conecta las buenas prácticas in situ con las estructuras institucionales a fin de sentar las bases de trabajo para el cambio emergente. Estos casos demuestran cómo unos procesos innovadores tan dispares se pueden conectar y modificar para crear una red de PEA incipiente.
    • …
    corecore